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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

PROJECT APOLLO

PRELTMINARY SURVEY OF RETROGRADE VELOCITIES
REQUIRED FOR INSERTION INTO LOW

LUNAR ALTITUDE ORBITS

SUMMARY

Closed lunar orbits are envisaged in the manned lunar mission program.
The study described herein was undertaken to obtain an apprecistion of the
relevant fuel consumption requlirements. The retrograde impulses necesgsary
for establishing the orbits were agsumed to occur at the point of closest
gpproach of the main earth-moon trajectory; this point designated as the
arrival position was restricted to a lunar altitude of 5,000 nautical miles
or less. The orientation of the arrival position vector relevant to any
coplanar radius vector 1s not constrained, however, and similarly the
gcalar value of the arrival velocity is unrestralned.

Since the arrival altitude is restriéted to 5,000 nautical miles, the
perturbing accelerations of the earth end sun are sufficiently small that
the vehlcle and moon essentially comprise an isolated.tWOHbody systemn.
This 1s further discussed in the report

Retrograde velocities are determined for any required pericynthion
positions. If the pericynthion orientation requirement is relaxed, then
a smaller retrograde velocity is in some cages possible. A comparison
between minimum retrograde velocities and retrograde velocities necessary
for stipulated pericynthion positions is given. Arrival velocitles are
correlated with earth insertion veloc1ties for a feasible earth insertion
position.

The equations developed for determining retrograde velocities for
desired pericynthilon positions are considered useful for estimating
essential data for the preliminary planning of the mammed lunar mission.
Some graphical representation is included herein for immediate familiari-
.zatlion with possible conditions.




INTRODUCTION

The study described in this report was initiated by the desire for a
preliminary assessment of various problems associated with local lunar
orbits as envisaged Iin the manned lunar mission program. Since it was
known that the lunar gravitational field would be dominant during low
altitude orbits and two-body solutions would be spplicable, it was decided
to take advantage of this and use a closed solution approach. When satellites
of a dominating gravitational field are studied, velocities relative to
the nonrotating coordinate system, origin the gravity source, are treated
as inertial in order that Newtonian laws may apply. As an example, planet
velocities relative to the sun are considered inertial and yet the sun is
thought to be moving in space. For & lunar satellite, a perfectly
elliptical orbit cannot be achieved due to the movements of the sun, earth,
and moon relative to the vehicle; however, for low altitude lunar orbits,
the lunar gravitational field is dominant; hence near elliptical orbits
may occur. Stablility checks of the ellipticity were examined from the
output of the Republic digital program noted in reference 1. The checks
confirmed the valildity of the approach taken.

Contained within this report is & method for determining the retro-
grade velocity necessary for establishing orbit with specific characteristics.
It 1s anticipated that the plane of the vehicles lunar arrival velocity
will, by guidance impulses, nearly coincide with the plane of the desired
resultant orbit; hence, one constraint of this study was that both the
arrival velocity and resultant orbit are coplanar. This report also
indicates the correlation of arrival velocity with specified earth insertion
conditions by means of a restricted three-body mathematical model.

It 1s possible in many cases to reduce the megnitude of the retrograde
impulse if the restrictions on the pericynthion prientation are relaxed.
Therefore, a method is presented whereby the minimum retrograde impulse
can be determined for an orbit with a specified pericynthion radius with
no constraint on orientation. The methods of determining minimum retro-
grade velocities and retrograde velocities for required response are
thought to be useful in that they point the way to a comprehensive
quantitative survey program for assessing fuel requirements for lunar orbits.



SYMBOLS

semimajor axls of the orbit, ft

Jacobian constant, nondimensional

distance from center of earth to center of moon, ft
Naperian logarithm base

universal gravitational constant, ftu/lb sec’
gravitational acceleration at earth's surface, ft/se02
altitude

altitude at apocynthion

altitude at pericyhthion

specific impulse of fuel, sec

mass of earth plus mass of moon, slugs

mass of earth, slugs

mass of moon, slugs

distance from moon center to vehicle position, ft
apocynthion distance from moon center, ft

distance from barycenter to vehicle," £t

distance from earth center to vehicle position, ft
pericynthion distance from moon center, ft
distance from earth center to barycenter, ft
distence from moon center to barycenter, ft

time, sec

velocity referred to the rotating coordinate system, origin

the barycenter, ft/sec

arrival velocity referred to the nonrotating coordinate system,

origin the moon center, ft/sec
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velocity referred to the nonrotating coordinate system, origin
the earth center, ft/sec

velocity referred to the nonrotating coordinate system, origin
the barycenter, ft/sec

velocity referred to the nonrotating coordinate system, origin
the moon center, ft/sec

orbit velocity referred to the nonrotating coordinate syétem,
origin the moon center, ft/sec

orbit spocynthion velocity referred to the nonrotating coordinate
system, origin the moon center, ft/sec

orbit pericynthion velocity referred to the nonrotating
coordinate system, origin the moon center,.ft/sec

retrograde velocity, ft/sec

rotating coordinates, origin the barycenter

nonrotating coordinates, origin the earth center
nonrotating coordinates, origin the barycenter
nonrotating coordiﬁates, origin the moon center

difference between 8 and 5, degrees

angle between vehicle velocity vectof and local horizontal,
degrees

fuel mass to gross mess ratio at commencement of burning for
entry into local lunar orbit

overall fuel mass to gross mass ratio required for both the
entry into and exit from the local lunar orbit at the same
point of orbit ‘ ‘

eccentricity

angle between r and r  degrees at instant of retro impulse
burnout P

angle between r and (-axis, degrees function of time at
instant of retro impulse burnout
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g = =, nondimensional
Me
lep = M nondimensional

included angle between V

A and VR, degrees

rotational velocity of earth-moon system, radians/sec




‘ARRIVAL VELOCITY

In the manned lunar mission program, it is assumed that one of the
mission's main objectives will be to make a close survey of the moon's
terrain. For a detailed survey, this will require the vehicle to establish
an orbit about the moon which will necessitate the application of a retro-
grade impulse. It 1s assumed for this study that the impulse will be ,
applied at the instant of closest approach to the moon when the vehicles
velocity vector is normal to the extension of the moon's radius. A con-
ception of the complete mission is shown in figure (l).

The vehicle's lunar arrival velocity and position can be correlated
with the earth insertion velocity and position by reference to a restricted
three-body mathematical model. In this model the moon and earth are -
considered to rotate with constant radil and constant angular velocity
ebout their common center of mass. The earth and moon are considered as
point masses and the vehicle's mass is regarded as infinitely small in
comparison. Further information concerning the characteristics of the
restricted three-body mathematlcal model are found in reference 2.

The restricted three-body equations of motion as given in the rotating -
coordinate system with origin the barycenter are o

5 _ooM(1 - w) (X - X)) oM (X - X))

X = oX + 20¥ - 5 - 3 (1.1)

r T
€p

? = aFY - 2wX

M1 - p) Y aMp Y
ER o2
ep
- ~GM(1§~ ) 2 GM; Z o (1.3)

r r
ep o)

where (X - Xi) 1s the distance along the X coordinate from the earth
center to the particle and (X —‘Xé) is thefdisténce along this coordinate

from the moon center to the particle.

By writing

WOY,7) = 2P0 g vR) . ML), ai (1.14)
ep




then the equations of motion become

¥ = %% + 20 (1.5)

v OW .

Y =S5 - 20X (1.6)
j/ =% | (1.7)

By multiplying the above by Ek, EY, and. 27 ‘reppectively, adding, and
integrating, Jacobi's integral is obtained, which is

(}i)g + (ﬁ'{)2 + (Z)2 = c1>2(X2 + Yg) + 26M(1 - p) + QGI;I B _ ¢ (1.8)
Tep
or
C = a?ri p 2l - oM 2ueM 2 (1.9)
P Tep r o

If the earth lnsertion velocity and position are known, the integration
constant C can be determined. Once C i1s determined, it is possible to
calculate the scalar value of the lunar arrival velocity for any given
arrival position. The transformation of the velocity in the rotating
coordinate system, origin the barycenter, to the nonrotating coordinate
system, origin the moon center, is

- e
V =V+oXxr (1.10)

The relationship between the velocities in the different coordinate
systems is illustrated in figure 2. For a comparison between earth
insertion velocities and lunar arrival velocities, refer to figure 3. It
should be noted that the vehicle is confined to the earth-moon plane

which contain the axes X, Y; X,, Y,; X, Y ; X and Y . The correlation
i7 717 Te’ Te’ Tm m

between arrival velocity and earth-insertion velocity is shown for the
condition of_ginimum earth-moon distance. The vehicle's arrival velocity
is in the (-& X Fﬁdirection.

It is shown below that for a given C and arrival position vector,
regardless of the orientation of the position vector, that the lunar arrivs
velocity is approximately constant. This assertion must be qualified by




restricting the altitude to the range considered in this study. The
velocity relatlonship is as follows:

ep

For convenience, equation (1.8-A) is rewritten such that the terms,

independent of the orientation of E? , appear on the left-hand side.

V2 A ——————-——-—«2(‘1 - b)CM (1.8-B)
r bp rep

Upon utilizing the law of cosines, the following is evolved

[wgr2 42 - )GMJ=w2[(R2+r2>+2R (X—R)il +
bp rep m m m

2(1 - p)oM N » o
R +R )P+ |+2(R +r \x R‘T]é’ : (1.11)
e m e m>< T m ’
Since R2 + r2 >>>.2R X ~-R -
+ m m m Rm >>>
and[(R +R>2+r2J>>>2<R +R)<X—R) andifX’lesr
m e m e m

Theref'ore
[were , 20 - ) M] N ®2<R§1 N r2> . 2(1 - p)oM

b
P Tep -/ 2 2
{;(R + R ) + r
m e

This allows equation (1‘8—A) to be medified to an excellent approximation
for the range of altitudes studied.

+
2

5 2 1 - u)a 3 e
N KR2+1~2>+ 2(1 - pjen 1 +2“§M~c (1.8-C)

[QR + R >2 + ra}g
m [




Consequently it can be seen from equation (1.8-C) that if r is constant,
then the orientation of r will not affect the value of V.

The trend of the arrival velocity with increase of altitude above
the lunar surface may be more clearly understood by the following con-
siderations. Substitution of equation (1-11) into equation (1.8-A) yields

v = m?l:Rg +r° 4+ 2R (x - R )J + 2(1 - piaM .
m m m . L
{Eé r R >2 + 2<R + R ><% - R j]z
e m e m m
2ui _ o | | (1.8-D)
r o
Differentiation of this equatlon with respect to r yields
W 2 2(1 - uw)(aM)r 2LGM |
Sy AT - 3 o (1.12)
2 2 2 T
R + R +r + 2R +R |[X -R
e m e m m
however,
oulr - g(l - w)(eM)r e

| 2 r
Kﬁ + R )2 + r2 + E(R + R ><X - R )] 2
e m e m m

Therefore, it is possible to reduce equation (1312) to the approximation
L

v N =35 X 10"

or 2
r

t/sect L (1.13)

This expression gives a fine approximation for the trend of the arrival .
velocity with altitude. Although this approximation applies for a

velocity V, which is referred to the rotating axis system with origin the
barycenter, 1t 1s shown below that with little loss of accuracy that V may

be regarded as VA . Given that

. 22
vV, = Vo ourV 4 afrt (1.14)




then
Ve >
81%:%}"*% (0°r%) + & (2arv)
which yields
Ny o, e o
A wr
Er_. 5 & _V B—— + Duv

and upon collecting terms

v,
2 - gf— (1 £ %) + 2o(arty)

10

(1.15)

(1.16)

(1.17)

By inserting a relevant range of values into the equation it is found that

o<1

v

and

A

2w(wrtV) <<< S

therefore, the following approximation is acceptable:

V2 3v2 1h

A _ =35 x 10
or or r2

ft/secg

(1.18)
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DETERMINATION OF RETROGRADE VELOCITIES

This sectlon contains a method for determining instantaneous
retrograde velocities within certain constrained conditions. For
the method described herein, the plane of action is defined as the plane
contailning the moon center and the arrival velocity vector. The retrograde
impulses will be applied in this plane, and therefore, the resulting orbits
will be in this plane. Also, since the retrograde impulse 1s to be
initiated at the point of closest approach to the moon, then the arrival
velocity vector will be normel to the position vector. The radius of
curvature of the resultant trajectory will never be decreased immedistely
after the application of retrograde impulse if the orbit is elliptical.
For nonelliptical orbits, the radius of «curvature will be decreased;
however, an alternative solution for the retrograde impulse determination
is required as will be brought out in the text.

The method for determining an orbit with a required pericynthion radius
and orientation is given below. The following sketch depicts the vehicle's
arrival at the vicinity of the moon where the plane of arrival is denoted
as the §, 1 plane.

\ S |

By the law of cosines

2 2 2 ’ '
Vg =V, + VO - 2V V, cos y (2.1)
where r VO
cos ¥y = mgvmﬂ (2.2)
8]
and o P
‘ 21
Voo a7 3) (2.3)



Substitution of equatidns (2.2) and (2.%) yields

GM (22 - r) 2v,r V
ve.o—o T ,y2__Apo
R ar A r

It is seen from the relationships as outlined in the appendix

that ‘
r ’ N
—ij‘ ~ cos 6
8 =1 ,
by T ,
oL 1 - cos 68/ .
r
It also follows from the relationships in the appendix that
v = {%M 1 -~ cos 6 2
op olr /T
P<_,‘p_ ~ cos 6)
xr
Substitution of equation (2.5) into (2.3) yields
aM A T
V2= otr_ _l;gose +2(_}g__s
© rp rp 1~ - cos 8 T
b
now let )
p
=0 (a)
GM
0 . a2
gr_ A (v)
b
1~ cos 6 =X (c)

1~ =rcos 8
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’(2.4)

(2.45)

(2.6)

(2.7)‘




2GM
o

— (s ~1) =X (a)
D

Substitution of identities a, b, c, and d allows equation (2.7)
to be rewritten

V02 - A% X+ x | (2.8)

Equation (2.1) may now be written as

1
2 2 2
AR A + K - 2V, #AX | (2.9)

Equation (2.9) is the general equation which determines the retro-
grade velocity for the required conditions.

Transposing equation (2.2) yields

p\( Yop
y = arc cosC_ ><Vo> | (2.2-4)

By determining y then p can be calculated from the law of
sines. Thus

A% .
p = arc sin VQ sin 7y (2.10)
R.

Equations (2.9) and (2.10) determine the value and sense of the
required retrograde velocity. However, it should be noted that the
resultant trajectory could represent any type of conic orbit depending
on the arrival conditions and the required characteristics of the
resulting trajectory. It is assumed that an elliptical orbit is desired;
however, it does not necessarily follow that the retrograde impulse will
yield an elliptical orbit. The classification of the conic orbit can be
found by determining the eccentricity where




1

For an elliptical orbit O < e <1, for a parabolic orbit e = 1, and
for a hyperbolic orbit e > 1.

If the resultant orbit is not elliptical, then a different method
for determining the retrograde lmpulse 1s necessary. Although it i1s not
envisaged that it will ever be desirable to arrive at a certain peri-
cynthion position on a hyperbolic trajectory, it is possible to determine
the necessary retrograde impulse vector which wlll accomplish this. If
equation (2.9) is modified to :

o] g

V. 2. v 2

2
R A+A +K+2V¢AX

\ (2.11)

then solution of equation (2.11) will yield the necessary velocity. The
orbit veloecity vector in this case will be opposite in direction from that
which would be determined if eguation (2.9) were utilized.

To obtain an insight into the quantitative values of retrograde
velocity, refer to figure 4 and the orbit reference table. Figure U4 shows
the retrograde velocities necessary for various combinations of arrival
and required conditions and the orbit reference table defines the orbits
established as a result of these retrograde impulses. As an example,
suppose it 1is desired to establish an orbit with a pericynthion a%titude
of 100 nautical miles with the pericynthion radius orientated 150 from the
insertion radius. . Assume that the vehicle arrives at an altitude of
1,000 nautical miles with a velocity of 6,500 ft/sec. Reference to
figure L4 shows that this will require a retrograde impulse of 3,360 ft/sec.
Reference to the orbit reference table, condition 2-B, shows that the
established orbit will have an apocynthion altitude of 1,128.6 nautical
miles, an apocynthion velocity of 3,031.5 ft/sec, a pericynthion velocity
of 6,036.9 ft/sec, and the time required for one complete orbit will be
3.8 hours.

It has been determined that the precéding equations will yield the
retrograde impulse for any specified values of pericynthion radius and
orientation. However, it is possible in many cases to reach these peri-
cynthion altitudes with smaller retrograde velocities if the restrictions
on the orientation of pericynthion are relaxed. Upon referring to
equation (2.9), it is seen that the quantities A, K, and ¢ are
independent of 8, therefore differentiation of equation (2.9) with
respect to 0 yields

o *
R)A 2 . (2.12)

oxX
50 = AN\A - VX //ao




and differentiation of identity (c) yields)

00 ( _ cos 0 2
@

To obtain a minimum retrograde velocity then Se = 0, and

2 g 1\ .
R —AG v¢x_—2> CMB)SMG'—O (2.14)
0 T A 2 |- ‘

: 6-(2059) - .
%

. It i1s known that A # O therefore

1
BVR2 5 (1 - %) sin o .
= W-V, 8X =0 ~ (2.1h4-1)

00 2
cos B
<l"¢>

Suppose tentatively that for equation (2.14%-A) to hold that

(2.13)

D

A
2 .
A-V, X =0 (2.15)
therefore
2
Xt ————5——2- (2.15-A)
: v, ¢
(4 %)
Substitution of equation (2.15-A) into identity (c) yields
D
A
1 - VA . v
Cos 0 = ———"t— (2.16)

;(AQ
% \VA@
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Equation (2.16) has two boundary conditions
6 =0° anda 6 = -180°

When 1 = rp, then 8 = O by definition of the two-body orbit and

this is the unique value of 6 to be considered.

By reference to equation (2.14-A), it is seen that 6 = -180° is an
alternative solution to

2 1
avR z(—¢>sinezo

594 - cos 9 2
|2

Two conditions are now gtipulated:

(2.17)

Condition (1) where

i

(o]
6 = -180" ana 3513——=o let Vo =V

Condition (2) where

SV.2

0 R .
-180° <8 <0 and 557 =0 let Vp'= Vo,

The following analysis is to prove that when VRQ exists, it is a
minimum. Tentatively assume that Vng E.VRQ in which case the following
is evolved from equation (2.9).

1
5
AQXl -2V, 8 A X > A%

n -

o= AV, P AX, (2.18)

P

s
It 1s convenient to add QVA @ AXl - AfXg to both sides. This
allows inequality (2.18) to be rewritten
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1 N/ 1 1 1 : ' |
2f, 2 2 2 2 2 '
ATNX T+ X >ch - X, >/2VA¢A(X1 - X, ) ‘ (2.18-4)

Poj

By definition X = ———£98°% .
L - *=rcos 6
@
therefore
1 L
%% (<) 2 (2.19)
1 S\, 2
@
For condition (2) equation (2.17) yilelds
LAY
VA¢
S (2.20)
1 [ A
@ VA¢
and substituting the value of 2% from equation (2.16), inequality
(2 20) simplifies to :
X, > 2 (2.21)
2 1
1+ 5_25- .

and

1
X22 3( 2 1) (2.21-4)
1+ Z.

£.°-%X°“<o0 (2.22)
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’ ‘
Inequality (2.18-A) which is the condition for Vﬁl >V 2 and states

R2
L L
. 2 23,2
that VR2 is a minimum, is now divided by Xl - X2 A, a negative
number which reverses the inequeality.
X2 +x° <2 ' A (2.23)
1 2 Y A :

From equation (2.15-A), both sides of which are positive, 1t is seen
that

A | (2.24)

therefore substitution of equation (2.24) into inequality (2.23) yields
1 1 1

2 2 2 -
X, 7+ X7 2 (2.25)

1
Subtraction of 2X22 from both sides of inequality (2.25) yields

el
N [

X, -X°go0 (2.26)

but from inequality (2.22), it is known that this 1s true, therefore,

when Vﬁg exists, it is & minimum. It must be noted that VRQ is a

minimum for a conic trajectory. For the trajectory to be elliptical,
two-body orbital equations yield equation (2.5) and for elliptical
conditions to exist

E‘Ep--l—cose>0

or

o2 L1 > cos 0 (2.27)




, .

Hence when VR exists and 2%2 -1 > cos 0, then it is the minimum

2
retrograde veloclty for an elliptical orbit.
In summation:

If VR2 ‘does exist, 1t 1s a minimum where

2
BVR
—_— = O
9
and L A 2 ‘
) - VA? )
Lg% <1 ,
2
1 _ /AN
9] VA?

when ¢ =1, © =0 is the unique value which satisfies equation (2.14).
If V does not exist and & # 1, then V is a minimum. If VRl is

R2 o R1
e minimum, 6 = -180" and
oV
— = 0
09
and 1if

2%2 -1 > cos 8

then the orbit 1s elliptical.

The method for determining the minimum retrograde velocity for a given
set of conditions is now outlined.



00

Step 1

Determine from the following equation if VR2 does exist:

[~

L. <_£\_>2
-1 Vp?

1 <_A_>2
@ VA¢

by o

(2.28)

6 = cos

If there is a solution to equation (2.28), then Vﬁé does exist and the

determined value of 6 will yield the minimum retrograde impulse. Should
the equation have no legitimate solutlon, then th does not exist and

therefore, 6 = ~1800, which is the value of 6 for Vﬁl s will yield:

the minimum retrograde impulse.

Step 2

The eccentricity of the orbit should now be determined. By using the
value of © asg found from equation (2.28), the eccentricity can be
determined from

e = % -1 | (2.29)

Step 3

The minimum retrograde velocity for an elliptical orbit can be
ascertaineéd by using the determined value of © 1in equation (2.9) which
is ' :
1
2 2 = .
Vo=V, A%X + X - 2V, phX (2.9)

If the resultant orbit is not elliptical, the minimum retrograde velocity
can be determined from eqguation (2.11) which 1s

[

2 = = .
Vp© = VT AT K 2V #AX (2.11)
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A comparison between minimum retrograde velocities and retrograde
velocities for constrained conditions is shown in figure 5. For the con-
struction of this figure, the vehicle is assumed to arrive at an altitude
of 1,000 nautical miles with an arrival velocity of 7,000 ft/sec. Graph (A)

shows | ~L where r 1is the arrival radius, plotted against 6 which willr
T )
yield the minimum retrograde velocity. Graph (B) shows<££>plotted against

the required minimum retrograde velocity and the comparison curve shows the
retrograde velocities which yield a pericynthion orientation of 150°. Graph (¢)

shows <§£> plotted against the resultant orbit apocynthion radius for the case

where the retrograde impulse is a minimum and the comparison case. It can be
seen that over a considerable range of <§£> 5, the minimum retrograde impulse
will offer some fuel savings without influencing the resultant orbits signifi-
cantly. In the range of %E .where the fuel savings are considerable, however,
the resultant orbits have the following undesirable features: large apo-

cynthion radii, large pericynthion velocities, and large orbit periods.

Another example of retrograde determination is shown in figure 6. Graph (Db)
of this figure shows the variation of arrival velocity as a unction of altitude
for a given earth insertion velocity and position. Graph (&) shows the retro-
grade impulses necessary to establish orbits of various configurationsfor the
arrival velocities and altitudes shown in graph (b). Although it is stipulated
that the pericynthion radius be orientated 180° from the arrival radius, it
should be noted that the constraints for these particular cases allow a minimum
retrograde impulse. This can be confirmed by substituting values into
equation (2.28). It should also be mentioned that since 0 = 180°, the arrival
altitude becomes the apocynthion altitude of the established orbit. This
figure also shows that the nearer the required orbit is to a circular orbit,
the lower the required retrograde velocity. Also, for a low altitude survey,
say from an altitude of 100 nautical miles, the nearer the orbit is to circular,
the smaller the pericynthim velocity will be, which will allow a longer survey
time.

Figure 6(6) is introduced to extend the quantitative information included
in this report. The classical restricted three-body model referred to on
page T yields a relationship between earth insertion (V) and arrival (V).
Examination of Jacobian constant contours reveals that there is absolute
maximum value of € and a corresponding minimum velocity for a given earth
insertion position vector which could possibly allow the lunar vehicle to free
coast to the moon. This maximum valuve of C and corresponding minimum
velocity is taken as a convenient mathematical base. The reference minimum
velocity in figure 6(c) is that for an altitude of 100 nautical miles, moon
lead angle of 90° and an earth-moon distance of 192,358 nautical miles. The
associated velocity for a given C will vary with position according to
equation (1.9), thus figure 6(c) affords a study of the consequences of a
variety of earth insertion conditions.
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FUEL REQUIREMENTS

The fuel required for instantaneous retrograde impulse for establishing
lunar orbits can.be calculated from the equation ’

5=1-¢e ° (3.1)

where © 1is the ratio of the fuel mass at commencement of burning to the
gross mass. Shown in figure 7 are the fuel mass to gross mass ratios
necessary for establishing the orbits shown in figure 6. The fuel con-
sumption values as shown are considered absolute minimums since the
impulses are assumed to be instantaneous. Fuel consumption values for
corresponding finite impulses, however, will differ little from the

given values. In all cases where thrust is acting against a resolved
welght component, there is a loss in efficilency and this to a small
degree would be the case with corresponding impulses of finite duration.

As an example of the use of this graph, consider a lunar vehicle
with an earth surface weight of 10,000 pounds containing a fuel of
250 seconds specific impulse. From the graph it will be noted that,
within the conditions considered, the earth surface weight of fuel
required for inserting the vehicle at a lunar altitude of 5,000 nautical
miles into an orbit with a pericynthion altitude of 100 nautical miles
is 3,200 pounds.

To obtain the total fuel requirement for orbit entry and exit, the
following is considered. The retrograde velocity to insert into the
orbit is assumed to equal the posigrade velocity for exit. This
assumption is made since the velocity requirements relative to the
center of the moon of the major earth-moon trajectory will not have
substantially chenged after a restricted number of lunar orbits. The
Umd_ﬁmlrmwhmmmtisfmmdfﬂmﬂmge@mupn

..VR
lg
E=1-e © (%.2)
or
§ =06 - a° (3.3)

where O is the total fuel mass to gross mass ratio required for orbit




entry and exit. Shown in figure 8 are the total fuel mass to gross
mass ratios necessary for orbit entry and exit for the orbits shown in
figure 6. As an example of the use of this graph, consider a lunar
vehlcle with an earth surface welght of 10,000 pounds containing & fuel
of 250 seconds specific impulse. From the graph, it can be seen that
the earth surface weight of fuel required for both entry and exit, &t
an altitude of 5,000 nautical miles for an orbit .with a pericynthion
altitude of 100 nautical miles, is 5,400 pounds.
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DISCUSSION ON ORBIT STABILITY

The simplest and possibly the best method of considering the
stability of the vehicle's orbit about the moon is to consider the
vehicle as a satellite of the moon where the following are considered
the major perturbation effects:

(a) the earth's gravity field

(b) the sun's gravity field

(c) +the moon's potential distribution
(d) +the lunar librations

By stability, it is implied that successive orbits have repetitive
characteristics.

A Dbrief analysis of the individual gravitational effects of the
~earth, sun, and moon show the possibility of a highly stable orbit.
The order of magnitude of the gravitational effects of the earth, sun,
and moon on the vehicle are shown below.

Zero lunar altitude Lunar altitude 5,000 n.m.
Moon 5.31 - 0.13 ft/se'c2
Sun 0.02 .02 ft/sec2
Earth .01 .0l ft/sec2

If for a short duration there is insignificant difference between
the effects on the moon and the effects on the vehicle due to the gravity
fields of the earth and sun, then the moon and vehicle will tend to
behave as a two~body system with a resulbtant stable orbit. Should the
apocynthion altitude of the vehicle's orbit never be greater than
5,000 nsutical miles, then the scalar sccelerations of the vehicle and
moon due to the sun never have a greater ratio than 1.000147 or the
inverse. The directional difference in the acceleration vectors is
negligible since the sun is approximately 80,764,000 nautical miles
avay. The corresponding ratio due to the earth is never greater than
1.0647 or the inverse and the directional difference is small. Viewed
in this manner, the sun's gravitational effect is very small. The moon
and vehicle acceleration vectorial difference due to the earth appears
more significant, bul due to the oscillatory nature of the difference,
since 1t is periodic with the vehicle's orbit, the effect is small over
a restricted number of orbits.
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Another perturbation effect of interest is the librations of the moon
about its center of gravity. The apparent librations as viewed from earth
are of no concern in this study. There is a small real libration in
longitude due to the eccentricity of the moon's orbit about the barycenter
but the period is a month, and hence this libration doeg not present a
problem. If any high frequency librations exist, they are thought to be
insignificantly small.

The main changes in orbit characteristics with time are anticipated
to be changes in the inclination of the orbit and regression of the nodes
relative to the lunar eguator.

Several stability checks have been conducted by a comprehensive
gimulation incorporated in a digital mathematical model which includes
earth, sun, and lunar potential distribution effects. (See ref. 1.)

This model 1s particularly attractive in that the origin of integration
is the moon for the conditions considered and the round-off errors are
those involved in the integration of perturbations from reference ellipses.
The checks added confidence to the above remarks concerning stability.

CONCLUSIONS

1. At low lunar altitudes, say less than 5,000 nautical miles,
the lunar vehicle In free-coast conditions will essentially behave as a
satellite of the moon, and hence the trajectory will be conical with the
center of the moon mass as & focal point. Depending on the velocity
imparted by the retrograde impulse, the trajectory will be elliptic,
parabolic, or hyperbolic. Elliptical trajectories are of interest in
that closed orbits about the moon are required for survey purposes.

2. If the retrograde impulse is such that the resultant orbit will
be elliptical, a simple thrusting loglc may be introduced for obtalining
a required pericynthionposition, the only requirement being that the
insertion velocity 1s that which would be yielded by the classical two-body
solution for the required conditions.

3. The lunar arrival velocity increases with increase in earth-insertion
velocity and this entails heavier fuel expenditure for insertion into a
local lunar orbit; however, there is the possibility that the trajectory
agsociated with s higher earth-insertion velocity will require less fuel
expenditure for guidance before the arrival phase.

4, TFor a given arrival altitude, the nearer the required orbit is to
a circular orbit, the lower the required retrograde velocity. Furthermore,
for a given pericynthion altitude, the nearer the associated orbit is to
circular, the smaller the pericynthion velocity. The pericynthion is probably
above the center of the area to be surveyed, and hence a small pericynthion
velocity 1s desirable.
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5« For an elliptical orbit with pericynthion altitude and orien-
tation stipulated, there is a unique retrograde velocity. This retrograde
velocity may or may not be the minimum which will yield the desired peri-
cynthion altitude. If the restriction on the orientatlon of the pericynthion
is relaxed, then in many cases it is possible to determine a smaller retro-
grade impulse which will yleld the desired pericynthion altitude. Utilization
of the minimum retrograde impulse, however, may produce an orbit with an
excessive apocynthion altitude, pericynthion velocity, and period. It is
possible to minimize these adverse features, at the expense of fuel, by
orientating the pericynthion gradually away from the point of minimum retro-
grade lmpulse to a point where the orbit characteristics become more
desirable. '
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APPENDIX
TWO-BODY EQUATIONS

In order to maintain continuity in the main text, transposes of
well-known two-body relationships are immediately used. This appendix
is ineluded to indicate the derivation of these relationships.

The differential equations of motion are
a% (99>2 GMim
M dte - r\dt =‘— -2 (Arl)'
and

Moa /2 a).
r dt (r at) = ° . (A-2)

From these equationsg and a knowledge of conic geometry, the follow-
ing equations can be evolved: The general conic expression for the
gemilatus rectum is

P = r(l + € cos @) : (A-3)

and when r = rp, then 6 = 0 which yields

o]
i

r (1 +€) (A-b)

The expression for the angle 7y which is the angle between the
velocity vector VO and the normal to the vector T 1is from integration

of equation (A-2) above

_plop .
cos 7 = =% (A-5)
o




28

Tt can be seen that equation (A-5) is the same as equation (2.2) of
the main text.
The expression for the semimajor axis which is evolved from

equation (A-3) is
“ ,g],-’ﬁ,;; g } 1
a = —L 5 (8-6)
LR
Substitution of the values of p and € from equations (A-
and (A-b) yield
r
iy (;;2- cos ;>
= -2 (a-7)
222 -1 - cos o

is the same as equation (2.5

It can be seen that equation (A~
the main text. For a hyperbola since € > 1 it can be seen from
equation (A-6) that the numerical value of a will be negative.

The orbit velocity is
(2-8)

o\ T a

, the value of a of equation (A-7)

Substituting into equation (A-

yields
2 GMo r (1 - cos B (,fg
Vo =1 T T (8-9)
Pp{ p\l~-=—cos 0 v
This is the same as equation (2.7) of the main text. The
pericynthion velocity is
2 21
o |2 -] (8-10)
op oir a
Lp
Substitution of the value of a from equation (A— ) yields
! (A-11)

™

‘2 CH%O E
5 P{ -~ Cos q

een that equation (A-11) is the same as equation (2.6) of the

Tt can be s
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CONDITION A B ¢
| ARRIVAL AITTTUDE - 1,000 NAUT, MILES
h,s naut. miles 0=120° | 0-150° | 6=180°
hg, neut, miles 50 1,'911*.0 1,1435.6 | 1,000.0
Voa, ft/sec 2,265.8 | 2,963.8 | 3,146.1
1 Vop, ft/sec ’ | 6,535.5 | 6,244.9 | 6,171.7
Period, hours A 5.3 387 3.5
hg 100 1,788.0 | 1,128.6 | 1,000.0
Voa ' 2,397.1 | 3,031.5| 3,197.5
2 Vop ’ 6,296.8 6,036.9 | 5,970.9
Period 4 5.1 |y 3.8 3.6
hg : 200 1,595.0 1,102.9 | 1,000,0
Vo '2,638.5 | 3,156.7 1 3,293.2
3 Vop 5,868.9 | 5,661.8 | 5,608.7
Period k9 ko0 3,8
ARRIVAL AUTITUDE - 3,000 NAUT, MILES
hp, naut, miles 0=120° 9=150o 8=180°
h, 50 * 84k, 339,7 | 4,07h.3 | 3,000,0
Vos 8.8 | 1,366.,0{ 1,701.0
b Vop 7,578.9 | 6,931.0 | 6,780.4
Period 17,330.2 10.3 7.7
Ya 100 % 56,562.3 | 3,988.0 | 3,000.0
5 Voa 132.3 | 1,86.6 | 1,734.6
Vop 7,333.1 | 6,72k, 4| 6,582.3
Period 315.3 10.2 7.8
ha 200 * 20,965.9 | 3,845.1| 3,000,0
Voa 357.9 | 1,510.8 | 1,798.3
6 Vop J 6,889.2 | 6,350.8| 6,20%.8
Period 77.9 10.1 8.0
ARRIVAL AUTITUDE - 5,000 NAUT, MILES
n_, neut. miles 0=1207 | 8-150° | 8=180°
hg 50 Hyperbolic | 8,335.5 1 5,000.0-
Voa Trajectory 767.9 1. 1,168.2
7 Vop 7,209.1 | 7,021.7
Period o 23.1 12.8
hg, 100 Hyperbolic | 8,044,8 | '5,000.0
8 Voa Trajectory 809.3 | 1,193.0
Vop ] T,005.4 | 6,826.5
Period A 22,% 13.0
he 200 Hyperbolic | 7,578:9 | 5,000.0
Yos, Trajectory 886.6 { 1,240,k
7 Vop . 6,656.5 | 6,472.8
Period 21.1 13.2

*¥In the solar system the assumption of elliptical characteristics in these cases is not valid.

Orbit Reference Table
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